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Abstract

The Swap-Based Tabu Search (SBTS) is a heuris-
tic algorithm for solving the maximum independent
set problems and it can solve the maximum clique
problems as well because the maximum clique in
a graph is equivalent to the maximum independent
set in its complementary graph. Although SBTS
has abundance of inherent parallelism, it is diffi-
cult to accelerate on hardware due to its solution
searching heuristic involving the indirect indexing
on array components. In this paper, we show a vari-
ant of SBTS that removed the indirect array index-
ing and describe its hardware acceleration using a
Field Programmable Gate Array (FPGA). Experi-
mental results show that our proposed SBTS vari-
ant on FPGA can solve the maximum clique prob-
lems up to 69.1 times faster than the original SBTS
algorithm on CPU.

1 Introduction

Given an undirected graph G, the maximum clique prob-
lem aims to find a clique with the maximum possible num-
ber of vertices for G where a clique is G’s subgraph in
which every two distinct vertices are adjacent (joined by an
edge). The maximum clique problem is an NP-hard com-
binatorial optimization problem occurring in many practical
applications [Pardalos and Xue, 1994], e.g., bioinformatics,
and VLSI CADs. The maximum independent set problem
involves finding an independent set with the maximum possi-
ble size in a graph, where the independent set comprises pair-
wise non-adjacent vertices in the graph. In general, a clique in
G is equivalent to an independent set in G’s complementary
graph. Herein, G’s complementary graph G indicates a graph
obtained by disjointing all the adjacent vertices and jointing
every two vertices that originally have not been adjacent in
G. Therefore, a maximum clique in G can be obtained by
converting G to G and then finding a maximum independent
set in G. Fig. 1 displays an example of the maximum clique
and the maximum independent set. In Fig. 1, the black ver-
tices consist of the maximum clique in G and the maximum
independent set in G, respectively. As depicted in Fig. 1, the
maximum independent set in G consists of the same vertices
that are comprised of the maximum clique in G.
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Figure 1: G and its maximum clique (on the left side), and G and its
maximum independent set (on the right side)

Field-programmable gate array (FPGA) is a programmable
LSI, on which very high performance can be achieved by ex-
ecuting a thoroughly parallelized algorithm.

The Swap-Based Tabu Search (SBTS) [Jin and Hao, 2015]

is one of the best performing heuristic algorithm for solving
the maximum clique problems as well as the maximum inde-
pendent set problems[Wu and Hao, 2015]. Although SBTS
has abundant inherent parallelism, it involves many occur-
rences of indirect indexing on array components in the form
of X[Y [i]] in its solution search heuristic, thereby making its
parallel processing difficult.

In this paper, we describe a modified version of the SBTS
algorithm that does not require the indirect indexing while
maintaining the algorithmic accuracy as that of the original
SBTS algorithm and also represent its parallel implementa-
tion on FPGA[Kanazawa, 2019]. We then evaluate the per-
formance of our modified SBTS algorithm and its FPGA im-
plementation, based on which we discuss the future tasks.

2 The Swap-based Tabu Search Algorithm

2.1 Definitions of the symbols

Algorithm 1 summarizes the main procedure of the SBTS al-
gorithm. Herein, V and E are the sets of vertices and edges in
a graph G, respectively. S denotes an independent set, Smax

the largest independent set found so far, and fmax the size of
Smax. NSk (k = 0, 1, 2, >2) displays the subset of the differ-
ence set of V and S (denoted by V \S), in which the element
vertices have k adjacent vertices in S. Note that NS>2 rep-
resents a subset of V \S, in which the element vertices have
three and more adjacent vertices in S.
k is called the “mapping degree” of the vertex v ∈ NSk

and v’s mapping degree is denoted by m(v). SBTS searches
for a solution by iteratively selecting a vertex in any of NSk

and moving it to S and its adjacent vertices in S to any of
NSk, i.e., “swapping” a vertex in any of NSk and its adjacent



Algorithm 1 Main procedure of the SBTS algorithm

Require: A graph G = (V,E) and Itersmax

/* V and E: sets of vertices and edges in G, respectively. */
/* Itersmax: maximum iterations per run). */

Ensure: The largest independent set Smax found.
1: Init(S,NS0, NS1, NS2, NS>2,m(), d(), e(), t());
2: Smax← S; fmax = |S|;
3:
4: /* Searching a Solution. */
5: for Iter = 1 to Itersmax do
6: v̇ ← NULL;
7: if NS0 ̸= ∅ or NS1 ̸= ∅ then
8: /* Intensification Phase */

9: v̇← Sel Intense(S,NS0, NS1, e(), d(), t(), Iter);
10: if v̇ == NULL then
11: /* Diversification Phase */

12: v̇← Sel Diversify(S,NS2, NS>2, d(), t(), Iter);
13: end if
14: end if
15: S← updateIndependentSet(v̇, S,NS0, NS1, NS2, NS>2);
16: update parameters(m(), d(), e(), t());
17: if |S| > fmax then
18: Smax ← S; fmax ← |S|;
19: end if
20: end for
21: return Smax;

vertices in S. Therefore, m(v)− 1 is equal to the decrease of
|S| when v ∈ V \S is moved to S.
e(v) and d(v) denote v’s “expanding degree” and “diversi-

fying degree”, respectively, which are the decision informa-
tion used in the heuristic of SBTS. e(v) represents the num-
ber of v’s adjacent vertices in V \S whose mapping degree is
equal to 1. Furthermore, e(v)− 1 corresponds to the number
of vertices whose mapping degree becomes zero if v ∈ S is
moved to V \S. Therefore, selecting v ∈ V \S whose adja-
cent vertex in S has larger expanding degree and moving it to
S leads to reach larger independent set in the next iteration.
d(v) indicates the number of its adjacent vertices in V \S. As
mentioned above, when v ∈ V \S is moved to S, its adjacent
vertices in S also move to any of NSk in accordance with the
changes of their mapping degrees. Therefore, selecting a ver-
tex with a larger diversifying degree leads to more changes in
NSk, thereby diversifying the choices in the next iteration.
t(v) indicates the iteration number until which v ∈ V \S is

prohibited from moving back to S. For example, t(v) = 100
represents that v is prohibited from moving back to S during
Iter ≤ 100, where Iter represents the current iteration num-
ber. We call t(v) v’s “tabu tenure”, and if Iter > t(v), we
say that v has passed its tabu tenure.

2.2 Overall procedure

SBTS begins by considering an initial independent set.
First, it sets S to empty. Then, until V becomes empty, it
iteratively selects v ∈ V at random, moves v to S, and re-
moves all of v’s adjacent vertices from V . Then, the algo-
rithm restores V to its original state, calculates V \S, and then
divides the element vertices in V \S into NS0, NS1, NS2,
and NS>2 in accordance with their mapping degrees. Subse-
quently, it iteratively alternates the intensification phase (i.e.,

searching a better solution than the current one) and diversifi-
cation phase (i.e., perturb the current solution to escape from
local optima) until it determines an independent set with the
target size or reaches the iteration limit.

In both of the search phases, the search process is driven
by selecting a vertex in any of NSk and then moving it to
S. In the following discussion, v̇ denotes a vertex in any of
NSk that is selected to move to S at the current iteration. As
mentioned in Section 2.1, when v̇ is moved to S, its adjacent
vertices in S must be moved to V \S at the same time, except
that v̇ is selected from NS0. Herein, we denote such vertices
as w. The size of S is increased, i.e., the solution is improved,
only if v̇ is selected from NS0. If v̇ is selected from NS1,
the search moves to another solution without deteriorating the
size of S. Otherwise, the size of S is decreased.

After adding v̇ to S, the diversifying and mapping degrees
of the following vertices as well as v̇ and w are changed.

• v̇’s adjacent vertices that have originally stayed in V \S
(denoted by w′).

• Vertices in V \S that are adjacent to w (denoted by w′′).

Note that w, w′, and w′′ represent all the corresponding ver-
tices of them, respectively. We will explain how the mapping
and diversifying degrees are changed in Section 3.1. Also,
the expanding degrees are updated accordingly. Then, the
vertices whose mapping degrees have become changed are
moved to any of NSk (k = 0, 1, 2, >2) in accordance with
their new mapping degrees. Furthermore, the tabu tenures are
calculated for w as follows:

• When m(v̇) = 1:

If |NS1| < |NS2| + |NS>2|, t(w) = Iter + 10 +
R(|NS1|), where R(x) is a random integer ranging
from 0 to x− 1. Otherwise, t(w) = Iter + |NS1|.

• When m(v̇) > 1: t(w) = Iter + 7.

2.3 Vertex selection heuristics

Intensification phase

The intensification phase is meant to find better solutions or
to reach other solutions without deteriorating the current solu-
tion. For these purposes, v̇ is selected from any of the vertices
in either NS0 or NS1.

In the intensification phase, v̇ is selected as follows.

(1) If NS0 is not empty, v̇ is always randomly selected from
NS0 regardless of whether it has passed its tabu tenure.

(2) Otherwise, v̇ is selected from NS1 as follows.

a. If |NS1| > |NS2| + |NS>2|, the vertices in NS1

whose adjacent vertex in S (denoted by u) satisfies
e(u) = 1 are excluded from the candidates for se-
lecting in advance.

b. Among the vertices in NS1 that have passed their
tabu tenures, select the vertex whose adjacent ver-
tex in S has the largest expanding degree. If there
are multiple candidate vertices whose adjacent ver-
tex in S has the same expanding degree, select
the vertex that has the largest diversifying degree
among them (ties are broken at random).



If no vertices to be added to S are found in the intensifi-
cation phase, it is implied that the search has reached a local
optima. At this point, SBTS switches the search to the diver-
sification phase.

Diversification phase

The diversification phase is meant for escaping from local op-
tima by perturbing the current solution. In the diversification
phase, v̇ is selected as follows.

(1) If |NS1| > |NS2|+ |NS>2|, select v̇ from the vertices
in NS>2 that have passed their tabu tenures with the
largest diversifying degree (ties are broken at random).

(2) Otherwise,

a. with probability p (hereinafter p = 0.5), select v̇
from the vertices in NS2 that have passed the tabu
tenures with the largest diversifying degree (ties are
broken at random).

b. with probability 1− p, select v̇ from NS>2 at ran-
dom without considering the tabu tenures.

2.4 Changes to facilitate parallel processing

Modify the heuristic in the intensification phase

The most difficult part to parallelize is Step (2) in the intensi-
fication phase. As described in Section 2.3, when v̇ is selected
from NS1, it is necessary for each candidate vertex in NS1 to
determine its adjacent vertex in S and then read its expand-
ing degree. In software programs, a table of the expanding
degrees and a list of adjacent vertices (called adjacency list)
for each vertex are prepared so that the expanding degrees
of only the adjacent vertices of a vertex can be read imme-
diately. This requires indirect array indexing in the form of
X[Y [i]], where X and Y correspond the expanding degree
table and v’s adjacency list, respectively, and Y [i] represents
one of the v’s adjacent vertices in S. If there are multiple ver-
tices that have common adjacent vertex in S, they can cause
access conflict in the expanding degree table. It is difficult
to schedule the vertices in NS1 to avoid the access conflict in
advance because adjacent vertex in S for each vertex varies in
every iteration. By preparing the duplicates of the expanding
degree table, the access conflict may be avoided. However,
it requires a very complicated control logic on parallel circuit
to maintain the consistency between the duplicates.

To solve this problem, we utilize the number of iterations
after passing the tabu tenures instead of the expanding de-
grees so that the vertex selection method can be parallelized
more easily. The new vertex selection method in the intensi-
fication phase is as follows:

(1) If NS0 is not empty, v̇ is always randomly selected from
NS0 regardless of whether it has passed its tabu tenure.

(2) Otherwise, it is selected from the vertices in NS1 that
have taken the most iterations after passing their
tabu tenures (ties are broken at random).

In this method, Step (2) can be executed by comparing the
tabu tenures of the vertices in NS1 and selecting the ver-
tex with the minimum tabu tenure, which can be parallelized
avoiding the indirect array indexing.

Simplify the tabu tenure calculation

To calculate the tabu tenures, it is necessary to calculate
R(x), which is equivalent to remainder of r divided by x.
The simple ways to calculate remainder on hardware are the
restoring or non-restoring divisions. However, these consume
calculation time proportional to the width of the operands. To
calculate the tabu tenures quickly with simple hardware im-
plementation, we replace R(x) to a function that returns 0 or
x − 1 at random (denoted by R′(x)). R′(x) can be realized
as follows:

• If a random bit r=1, return x−1. Otherwise, return 0.

R′(x) can be implemented by only a random bit generator
and a multiplexer, which requires considerably less hardware
resources and is much faster than R(x).

3 Hardware implementation
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Figure 2: Block diagram of the proposed approach on hardware

Fig. 2 shows a block diagram of the hardware. In Fig. 2,
m tbl, d tbl, and tabu tbl denote the mapping and diversify-
ing degrees, and the tabu tenures for each vertex, respectively.
S array and NSk arrays denote the binary arrays, which cor-
respond to S and NSk in Algorithm 1, respectively. |S| cnt
and |NSk| cnts denote the counters that hold the numbers of
the elements in S and each of NSk, respectively. The list
table holds the adjacency list for each vertex. “list(v)” rep-
resents v’s adjacency list. The address table translates v to
the address of list(v) in the list table. All the tables except
for the list table are implemented by the on-chip memories
on FPGA. “vertex selector” denotes the function block to se-
lect v̇ based on the selection methods in the intensification or
diversification phases. “updater” denotes the function block
to update m tbl, d tbl, tabu tbl, S array, NSk arrays, |S| cnt,
and |NSk| cnts in each iteration.

The aforementioned tables and arrays, with the exception
of the list and address tables, are in the form of the content ad-
dressable memory (CAM), in which a vertex number is used
as address. For example, m tbl[0] represents the mapping de-
gree of Vertex 0, and tabu tbl[1] indicates the tabu tenure of



Vertex 1. The values in the arrays indicate which of the vertex
sets each vertex is in. For example, S array[2] = 1 indicates
that Vertex 2 is in S, and NS0 array[3] = 0 represents that
Vertex 3 is not in NS0. Furthermore, when S array[v] and
NSk array[v] become 1 and 0, respectively, it means that v
has moved from NSk to S at the iteration.

m tbl, d tbl, tabu tbl, S array, and NSk arrays are divided
into P sub-banks such that up to P vertices in list(v) are pro-
cessed at once. Also, |S| cnt and |NSk| cnts comprise P sub-
counters, respectively. The i-th sub-counters hold the number
of 1 (i.e., the number of the element vertices) in the i-th sub-
banks of the corresponding arrays. The total number of the
element vertices is determined by summing up the values of
the sub-counters. To read out the values of those tables and
arrays for a vertex, the lower log

2
P bits of the vertex num-

ber are used to specify the index of the sub-banks to access
and the remaining bits of the vertex are used as the address
of the sub-banks. For example, m tbl[v] is read out from the
address v >> log

2
P of the (log

2
P )-th sub-bank of m tbl,

where ’>>’ represents the right-shift operation. Each ver-
tex corresponds injectively to a certain sub-bank, which fa-
cilitates the sub-bank addressing and parallel processing of
multiple vertices.

list(v) whose length L exceeds P is divided into L/P sub-
lists and each sub-list is processed in turn. Vertices in each
sub-list are placed to the fixed position such that they access
to only the corresponding sub-banks of m tbl, d tbl, tabu tbl,
and the arrays (i.e., the sub-banks whose indices are equiva-
lent to the lower log

2
P bits of the vertices).

3.1 Processing sequence

In our proposed approach, a host CPU converts the given
graph to its complementary graph, generates the address and
list tables, and finally, downloads them to the circuit on
FPGA. Next, the circuit on FPGA constructs an initial so-
lution as follows.

i. Set all the bits to 1 in NS0 array.

ii. Select v̇ that satisfies NS0 array[v̇] = 1 at random and
set NS0 array[v̇] and S array[v̇] to 0 and 1, respectively.

iii. Read list(v̇) and then update m tbl[w′] and d tbl[w′] and
then set NSk array[w′] according to the new values of
m tbl[w′].

iv. Update |S| cnt and |NSk| cnts.

v. Repeat Steps ii) to iv) until all the bits in NS0 array be-
come 0.

Subsequently, the following procedure is iteratively executed
on FPGA to search a solution (k = 0, 1, 2 or >2 in the fol-
lowing procedure).

vi. Select v̇ according to the heuristics in SBTS.

vii. Set S array[v̇] to 1 and NSk array[v̇] to 0, respectively,
and then update m tbl[v̇], and d tbl[v̇].

viii. Read vertices w and w′ from list(v̇), and then up-
date tabu tbl[w], m tbl[w], d tbl[w], m tbl[w′], and
d tbl[w′]. Then, set S array[w] to 0, and set
NSk array[w] and NSk array[w′] according to the new
values of m tbl[w] and m tbl[w′].

ix. Read vertices w′′ from list(w), update m tbl[w′′] and
d tbl[w′′], and then set NSk array[w′′] according to the
new values of m tbl[w′′].

In the above procedure, |S| cnt and |NSk| cnts are also up-
dated accordingly whenever S and NSk arrays are updated.

Updating tables and arrays

In each iteration, the mapping degrees of w and w′ are incre-
mented, and the diversifying degrees of w and w′ are decre-
mented. This is because v̇, i.e., one of the adjacent vertices of
w and w′, has moved to S. On the other hand, The mapping
degrees of w′′ are decremented and the diversifying degrees
of w′′ are incremented. This is because w′, i.e., one of the
adjacent vertices of w′′, have moved to V \S. v̇’s mapping
and diversifying degree become 0 and the length of list(v̇),
i.e., the number of v̇’s adjacent vertices, respectively.

In Step viii, up to P vertices are read from list(v̇) at once
and then their values of the tables and NSk arrays are updated
accordingly, which is repeated until all the vertices in list(v̇)
are processed. In Step ix, vertices in list(w) are processed
likewise. There exist abundant parallelism in Steps viii and
ix, depending on the number of adjacent vertices for each ver-
tex. There are no data dependencies in updating these tables
and arrays, which is very suitable task for parallel processing.

Selection of a vertex to be swapped

In our proposed approach, the selections of v̇ can be catego-
rized into the following three types of methods (note that the
intensification phase is changed as described in Section 2.4).

(x) Select a vertex among the vertices ν that satisfy
NSk array[ν] = 1 at random, where k = 0 or >2 (cor-
responding to Step (1) in the intensification phase and
Step (2)-b in the diversification phase).

(y) Select a vertex with the smallest value of tabu tbl among
the vertices ν that satisfy NS1 array[ν] = 1 (correspond-
ing to Step (2) in the intensification phase).

(z) Select a vertex with the largest value of d tbl among the
vertices ν that satisfy NSk array[ν]= 1, where k = 2 or
>2 (corresponding to Steps (1) and (2)-a in the diversi-
fication phase).

Among them, (x) is parallelized using a binary tree of mul-
tiplexers with random selection signals. (y) is virtually equiv-
alent to the min function, which is parallelized by a binary
tree of the min operation circuits (comprising multiplexers
and comparators). Similarly, (z) is parallelized by a binary
tree of the max operation circuits.

4 Performance evaluation
4.1 Experimental setup

We compared our modified SBTS algorithm and its FPGA
implementation with the original SBTS algorithm using DI-
MACS graph suite[Johnson and Trick, 1996]. For the eval-
uation, we tested two types of software solvers, the origi-
nal SBTS algorithm published by the developer1 (hereinafter
“original”) and our modified SBTS algorithm (hereinafter
“modified”), and the FPGA implementation of the modified

1http://www.info.univ-angers.fr/ hao/mis.html.



SBTS (hereinafter “FPGA solver”). The software solvers
were compiled using g++ with the -O3 option and were ex-
ecuted on a Core-i7 5820K 3.3 GHz processor with 16 GB
main memory. The FPGA solver (P = 64 and 140 MHz sys-
tem clock frequency) was implemented on a XIL-ACCEL-
RD-KU115 board comprising a Kintex Ultrascale XCKU115
FPGA (Xilinx, Inc.) and 16 GB off-chip DDR4-SDRAMs.
Table 1 summarizes the resource utilization of the FPGA
solver.

Table 1: Resource utilization of the FPGA solver (P = 64)
Resource Consumed / Total

LUT(logic element of FPGA) 257.3K / 660.8K (38.9%)

flipflop 256.9K / 1321K (19.4%)

36Kb on-chip memory (block RAM) 727 / 2160 (33.7%)

Evaluation condition In each solver, 10 trials were con-
ducted for each graph. Each trial was stopped when it either
found the best-known solutions, i.e., the cliques of the graphs
with the best-known sizes, or reached 109 iterations that were
divided into 105 restarts (restart per 104 iterations).

4.2 Accuracy evaluation
Table 2 shows the comparison of the number of graphs for
which each solver found the best known solutions in all the
10 trials. As is evident from Table 2, our proposed approach
prevented the loss of accuracy in most cases.

We then focused on the graphs that each solver in at least
one trial skipped out on the best-known solutions. Table 3
shows the comparison of the average sizes of the obtained
cliques for such graphs. Degradations of the solution quality
were observed for MANN a45 and MANN a81 in the mod-
ified and the FPGA solvers. The solution search heuristic of
our proposed approach may not be appropriate for the graph
structures in MANN graphs. To make it clear, additional eval-
uations are required to evaluate the relationship between the
graph structures and effectiveness of our proposed approach.

Table 2: The number of graphs for which each solver found the best-
known solutions in the 10 trials

# of graphs original modified FPGA solver

80 78 77 77

Table 3: Average sizes of the cliques obtained for hard instance
graphs

graph original modified FPGA solver

C2000.9 77.2 77.7 76.9

brock800 1 22.6 23.0 23.0
MANN a45 345.0 344.0 344.5
MANN a81 1100.0 1097.0 1098.0

4.3 Performance gain

Performance gain by modifying the SBTS algorithm

We first evaluated the performance of the software solvers.
The modified reached the best-known solutions faster than
the original in 69 graphs. The number of iterations per sec-
ond in the modified was 2.51× on average and 15.6× at max-
imum as compared with the original, which indicates that the
throughput of the search became improved.

This may result in the difference of the intensification
phases in the original and the modified solvers. As described
in Section 2.4, the modified does not incur the indirect array
indexing by the reference to the expanding degrees occurring

in the original. This leads to reducing the random access to
the main memory and promoting burst access to it, thereby
improving the throughput of the search. Furthermore, the
modified utilizes only one parameter, tabu tenure, to select a
vertex to be swapped in its intensification phase, whereas the
original utilizes two kinds of parameters, the expanding and
diversifying degrees. This leads to reducing the frequency of
the main memory access in itself.

Performance gain by hardware acceleration

Next, we compared the performance of the FPGA solver with
the above-stated two types of software solvers. According to
our experiments, all the software solvers and the FPGA solver
reached the best-known solutions for 63 graphs among the 80
graphs in less than 1 second. In the following evaluation, we
exclude such graphs and focus on the remaining 17 ones.

Table 4 shows the profiles of such benchmark graphs. In
Table 4, Nv and NE denote the number of vertices and edges
in a graph; #adjavg shows the average number of adjacent
vertices of each vertex, i.e., the average length of list(v),
“best” denotes the best-known size of the maximum cliques;
and “density” denotes the graph densities, i.e., the actual
number of edges over the maximum possible number of edges
(= 2×NE/(Nv(Nv − 1))).

Table 5 shows the performance comparison of each solver.
The graph names are abbreviated in Table 5. “size” denotes
the best sizes of the obtained cliques in the experiments (the
average sizes are in brackets). “#avg.iter” and “avg.sec” de-
note the average number of iterations and the average execu-
tion time in seconds, respectively, to obtain the best-known
solutions. “avg.sec” also includes the initialization time (the
time spent for reading the instances and generating the com-
plementary graphs). The time spent on downloading the data
into the FPGA is also accounted for by avg.sec of the FPGA
solver. X1 and X2 represent the speedup values of the FPGA
solver by avg.sec compared with the original and modified,
respectively. The trials that did not obtain the best-known so-
lutions are excluded for evaluating X1 and X2.

As shown in Table 5, the FPGA solver achieves well (up
to 69.1× speedup) as compared with the original, and on the
other hand, the speedup over the modified is limited (up to
5.84×). This indicates that our approach to facilitate parallel
processing on FPGA contributes to promote the throughput of
the algorithm on CPU as well. In other words, the speedup of

Table 4: Benchmark profile
graph NV NE #adjavg density(%) best

brock400 1 400 59723 100.4 74.8 27

brock400 2 400 59786 100.1 74.9 29
san400 0.7 1 400 55860 119.7 70.0 40
brock800 1 800 207505 280.2 64.9 23
brock800 2 800 208166 278.6 65.1 24
brock800 3 800 207333 280.7 64.9 25
brock800 4 800 207643 279.9 65.0 26
C1000.9 1000 450079 98.8 90.1 68
DSJC1000 1000 499652 499.3 50.0 15
san1000 1000 250500 498.0 50.2 15
MANN a45 1035 533115 3.8 99.6 345
p hat1500-1 1500 284923 1119.1 25.3 12
C2000.5 2000 999836 999.2 50.0 16
C2000.9 2000 1799532 199.5 90.0 80
MANN a81 3321 5506380 3.9 99.9 1100
keller6 3361 4619898 610.9 81.8 59
C4000.5 4000 4000268 1998.9 50.0 18



Table 5: Performance comparison
software (original) software (modified) FPGA solver (P = 64)

graph size #avg.iter avg.sec size #avg.iter avg.sec size #avg.iter avg.sec X1 X2

br400 1 27 (27) 1.39×10
7 27.5 27 (27) 4.94×10

6 3.76 27 (27) 4.96×10
6 6.56 4.20 0.574

br400 2 29 (29) 4.88×10
6 9.80 29 (29) 1.79×10

6 1.38 29 (29) 1.23×10
6 1.69 5.81 0.816

s 0.7 1 40 (40) 4.15×10
5 1.087 40 (40) 7.52×10

4 0.0933 40 (40) 1.91×10
5 0.315 3.45 0.296

br800 1 23 (22.8) 4.09×10
8 4700 23 (23) 3.18×10

8 568 23 (23) 3.43×10
8 496 9.47 1.15

br800 2 24 (24) 1.63×10
8 1869 24 (24) 1.17×10

8 202 24 (24) 1.36×10
8 195 9.58 1.04

br800 3 25 (25) 1.01×10
8 1161 25 (25) 6.44×10

7 113 25 (25) 1.27×10
8 180 6.45 0.626

br800 4 26 (26) 2.07×10
7 240 26 (26) 2.53×10

7 45.3 26 (26) 3.38×10
7 47.7 5.02 0.948

C1000.9 68 (68) 1.83×10
6 8.35 68 (68) 2.03×10

7 14.4 68 (68) 1.15×10
7 16.4 0.510 0.880

DSJC 15 (15) 3.44×10
4 1.052 15 (15) 7.23×10

4 0.385 15 (15) 8.31×10
4 0.323 3.25 1.19

s1000 15 (15) 1.32×10
6 28.6 15 (15) 2.40×10

5 1.057 15 (15) 1.75×10
5 0.415 69.1 2.55

a45 345 (345) 3.33×10
6 5.89 344 (344) - - 345 (344.5) 8.48×10

7 112 0.0526 -

p1500-1 12 (12) 9.42×10
4 6.64 12 (12) 1.15×10

5 1.032 12 (12) 7.97×10
4 0.540 12.3 1.91

C2000.5 16 (16) 2.82×10
4 2.11 16 (16) 7.11×10

4 0.523 16 (16) 4.68×10
4 0.602 3.51 0.868

C2000.9 78 (77.2) - - 80 (77.7) 3.88×10
8 476 78 (76.9) - - - -

a81 1100 (1100) 7.60×10
5 18.9 1097 (1097) - - 1098 (1098) - - - -

keller6 59 (59) 6.82×10
6 287 59 (59) 1.68×10

7 58.4 59 (59) 4.88×10
6 10.0 28.7 5.84

C4000.5 18 (18) 4.47×10
6 786 18 (18) 6.80×10

6 76.8 18 (18) 6.98×10
6 18.3 42.9 4.19

the FPGA solver over the original may result not only from
the parallel processing but also from the low throughput of
the original.

Reducing off-chip DRAM access latency As discussed
above, the speedup of the FPGA solver over the modified is
limited. The access latency of the off-chip DRAMs is con-
sidered to be a major factor in limiting the performance of a
search. In the FPGA solver, the list table was assigned to the
off-chip DRAMs. As can be seen from Table 1, 1433 on-chip
memories (block RAMs) were still available. By implement-
ing the list table using the block RAMs, the off-chip DRAM
access latency can be canceled.

We could implement a circuit that could handle the graphs
with 800 vertices by using 256 block RAMs instead of using
off-chip DRAMs to implement the list table. However, the
system clock frequency was reduced to 133 MHz because the
timing constraints became harder by the increase of the block
RAMs. Table 6 shows the performance of the above-stated
circuit. In Table 6, X3 represents the speedup values of the
circuit without using the off-chip DRAMs by avg.sec over
the FPGA solver (with using off-chip DRAMs), and the other
notations have the same meanings as in Table 5. X3 ranges
from 1.54× to 1.78×, which implies that the off-chip DRAM
access latency accounted for 35% − 44% of the overall exe-
cution time in the tested cases.

Although larger graphs can be handled using more block
RAMs to implement the list table, overuse of the block RAMs
must be avoided so that the system clock frequency degra-
dation does not neutralize the cancellation of the off-chip
DRAM access latency. To cancel the DRAM access latency
using a small number of the block RAMs for larger graphs,
a cache memory for the list table may be effective. One of
the concerns of doing this is that multiple cache lines are nec-
essary to hold long adjacency lists, which requires a compli-
cated cache control logic. However, the DRAM access la-
tency for reading such long lists can be negligible because
the time it takes to read long lists is higher than the DRAM
access latency. Therefore, caching only short adjacency lists
that can be held by a single cache line would be reasonable.

5 Conclusions and future work
In this paper, we described an approach for solving the max-
imum clique problems using FPGA based on the SBTS algo-

Table 6: Performance of the FPGA solver (P = 64, without using
off-chip DRAMs, and 133 MHz system clock frequency)

graph size #avg.iter avg.sec X1 X2 X3

b400 1 27 (27) 4.96×10
6 3.69 7.47 1.02 1.78

b400 2 29 (29) 1.23×10
6 0.953 10.3 1.45 1.77

b800 1 23 (23) 3.43×10
8 288 16.3 1.97 1.72

b800 2 24 (24) 1.36×10
8 115 16.3 1.77 1.70

b800 3 25 (25) 1.27×10
8 106 10.9 1.06 1.69

b800 4 26 (26) 3.38×10
7 28.6 8.38 1.58 1.67

400 0.7 1 40 (40) 1.91×10
5 0.205 5.29 0.454 1.54

rithm. We modified the SBTS algorithm to discard the indi-
rect array indexing occurring in the original SBTS algorithm,
thereby facilitating its parallel implementation. We then im-
plemented a circuit based on the modified version of SBTS
using FPGA and evaluated the performance.

One of the future work is extending the size of the graphs
that can be handled. Our current implementation can handle
the graphs with 4096 vertices. In our approach, the utiliza-
tion of the block RAMs was proportional to Nv , which was
the main factor in limiting the graph size that could be han-
dled. Considering the utilization of the block RAMs in our
current implementation, our proposed approach may handle
the graphs with 10K vertices using the same FPGA board.
However, real-world graphs are considerably larger (compris-
ing more than 1M vertices) than that. To handle such graphs,
it is necessary to move the most part of the tables on the
block RAMs to the off-chip DRAMs, which may cause per-
formance degradation by the increase of the DRAM access
latency. To reduce the overhead by the increase of the DRAM
access latency, we need to investigate appropriate data parti-
tion for the block RAMs and the off-chip DRAMs that could
fully utilize the bandwidth of the DRAMs as well as introduc-
ing the cache for the DRAMs by utilizing the block RAMs.

Another future work is applying our proposed approach
to some variants of the maximum clique problems, e.g., the
weighted maximum clique problems. In [El Baz et al., 2016;
Sevinc and Dokeroglu, 2020], parallel algorithms have been
proposed for the weighted maximum clique problems. Our
proposed approach would also be applied to solving the
weighted maximum clique problems by changing the defini-
tions of the mapping and diversifying degrees, respectively.
Extending our proposed approach to handle the weighted
maximum clique problems and comparing its performance
with the existing parallel algorithms are also our future tasks.
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